

Geophysical Investigation of Asteroids by Dawn Spacecraft

Caltech Planetary Seminar

A. I. Ermakov¹ (eai@caltech.edu), R. S. Park¹, C. A. Raymond¹, M. T. Zuber², C. T. Russell³, R. R. Fu⁴

¹Jet Propulsion Laboratory, California Institute of Technology

²Department of the Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology

³University of California Los Angeles

⁴Department of Earth and Planetary Sciences, Harvard University.

Goal of the talk:

 Explain how the internal structures of Vesta and Ceres evolved by looking at the present-day topography and gravity measured by Dawn

How do we use shape data to study interiors?

- Hydrostatic equilibrium
- Isostatic compensation
- Viscous relaxation
- Shape model is required for computing gravity anomalies
- Topographic roughness
- Local geomorphology

beyond this talk

Shape models

Geographic grid

Shape models

Geographic grid

Polyhedral model

Shape models

Geographic grid

Polyhedral model

- > Spherical harmonic expansion
 - set of orthogonal functions on a sphere

Spherical harmonics

$$U(r,f,I) = \frac{GM}{r} \hat{\mathbf{e}}^{\dot{\mathbf{e}}} 1 + \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf$$

U – gravitational potential

 φ – latitude

 λ – longitude

r – radial distance

n – degree

m – order

Spherical harmonics

$$U(r,f,I) = \frac{GM}{r} \hat{\mathbf{e}}^{\dot{\mathbf{f}}} + \hat{\mathbf{e}}^{\dot{\mathbf{f}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}$$

U – gravitational potential

 φ – latitude

 λ – longitude

r – radial distance

n – degree

m – order

Mascons

Gravity and topography in spherical harmonics

Shape radius vector

Gravitational potential

Power Spectral Density

$$S_n^{gg} = \mathop{\mathring{o}}_{m=0}^n \frac{C_{nm}^2 + S_{nm}^2}{2n+1}$$

gravity

$$S_{n}^{tt} = \frac{{}_{nm}^{n}}{{}_{m=0}^{n}} \frac{A_{nm}^{2} + B_{nm}^{2}}{2n+1}$$

topography

$$S_{n}^{gg} = \mathop{\mathring{o}}_{m=0}^{n} \frac{C_{nm}^{2} + S_{nm}^{2}}{2n+1}$$

$$S_{n}^{tt} = \mathop{\mathring{o}}_{m=0}^{n} \frac{A_{nm}^{2} + B_{nm}^{2}}{2n+1}$$

$$S_{n}^{gt} = \mathop{\mathring{o}}_{m=0}^{n} \frac{A_{nm}C_{nm} + B_{nm}S_{nm}}{2n+1}$$

gravity-topography cross power

- In hydrostatic equilibrium
 - Surfaces of constant density, pressure and potential coincide
 - No shear stresses

$$\rho = \rho(r)$$
, ω

$$\rho = \rho(r)$$
, ω

In hydrostatic equilibrium

$$\rho = \rho(r)$$
, ω

Not in hydrostatic equilibrium

$$\rho = \rho(r)$$
, ω

Compensation

Isostatic equilibrium:

- Equal weight of crustal columns at the depth of compensation
- Deviatoric stresses
 within the
 isostatically
 compensated layer
 are minimized

Watts, 2001

Free-air anomaly

$$\sigma_{\mathsf{FA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{\text{model}} =$$
 gravity of hydrostatic figure

$$\sigma_{\mathsf{FA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{\text{model}} =$$
 gravity of hydrostatic figure

Bouguer anomaly

$$\sigma_{\mathsf{BA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{\mathsf{model}}$$
 =

gravity of shape assuming ρ

Gravity anomalies

$$\sigma_{\mathsf{FA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{\text{model}} =$$
 gravity of hydrostatic figure

Bouguer anomaly

$$\sigma_{\mathsf{BA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{
m model}$$
 =

gravity of shape assuming ρ

Isostatic anomaly

$$\sigma_{\mathsf{IA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

h − depth of

compensation

$$\sigma_{\text{model}} =$$
 gravity assuming isostasy for ρ_1, ρ_2, h

Why Ceres?

- Largest body in the asteroid belt
- Low density implies high volatile content
- Conditions for subsurface ocean
- Much easier to reach than other ocean worlds

Ceres location in the asteroid belt

Why Ceres?

- Largest body in the asteroid belt
- Low density implies high volatile content
- Conditions for subsurface ocean
- Much easier to reach than other ocean worlds
- Major unexplored object in the asteroid belt

Ceres location in the asteroid belt

Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated into a water mantle and a mostly anhydrous silicate core.

What did we know before Dawn

Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated into a water mantle and a mostly anhydrous silicate core.

Zolotov 2009

Ceres formed relatively late from planetesimals consisting of hydrated silicates.

What did we know before Dawn

Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated into a water mantle and a mostly anhydrous silicate core.

Zolotov 2009

Ceres formed relatively late from planetesimals consisting of hydrated silicates.

Bland 2013

If Ceres *does* contain a water ice layer, its warm diurnallyaveraged surface temperature ensures extensive viscous relaxation of even small impact craters especially near equator

What did we know before Dawn?

Ruzicka et al., 1997

McCord and Sotin, 2005

What did we know before Dawn?

Vesta Ceres

Ruzicka et al., 1997

McCord and Sotin, 2005

Dawn geophysical data

- Shape model
 - Stereophotogrammetry (SPG) from DLR
 - Stereophotoclinometry (SPC) from JPL
 - Mutually consistent with the accuracy much better than the spatial resolution of gravity field
- Gravity field
 - Accurate up to n = 18 ($\lambda = 93$ km) for Vesta (Konopliv et al., 2014)
 - Accurate up to n = 17 ($\lambda = 174$ km) for Ceres (Konopliv et al., 2017)
- Assumptions we have to make:
 - Multilayer model with uniform density layers
 - Range of core densities for Vesta
 - Range of crustal densities from HEDs for Vesta
 - Can't really assume anything for Ceres

Reference ellipsoid:

a = 280.9 km

c = 226.2 km

Reference ellipsoid:

a = 280.9 km

c = 226.2 km

Ceres SPC

Vesta and Ceres

Gaskell, 2012

Park et al., 2016

Vesta and Ceres

Gaskell, 2012

Park et al., 2016

Vesta and Ceres topography

Shape statistics

Parameter	Vesta	Ceres
Radius range (km)	80.1	44.5
Polar flattening	0.2038	0.0770
Equatorial flattening	0.0262	0.0043
equatorial/polar	12.9%	> 5.6%
Geoidal height range (km)	37.9	13.2
Geoidal height RMS (km)	5.2	2.1

- Ceres is closer to hydrostatic equilibrium than Vesta
- Smoother topography at Ceres

Hypsograms of Vesta and Ceres

*Hypsogram is a fancy word for the "histogram of elevations"

How we use shape data?

- Hydrostatic equilibrium
- Isostatic compensation
- Viscous relaxation

homogeneous more oblate

differentiated less oblate

How we use shape data?

- Hydrostatic equilibrium
- Isostatic compensation
- Viscous relaxation

Isostatic compensation

> Example of a spherical cap (depression) relaxation

Interface evolution

Admittance evolution = ratio of gravity to topography

Isostatic compensation

- Admittance (Z) is a ratio of gravity to topography.
- Isostatically compensated and uncompensated topography have different admittances.
- Modeling of isostasy allows constraining the density and thickness of the compensated layer as well as the density contrast.

Compensation for Vesta and Ceres

- Vesta topography is uncompensated
- Vesta acquired most of its topography when the crust was already cool and not-relaxing

- Ceres topography is compensated
- Lower viscosities (compared to Vesta) enabled <u>relaxation</u> of topography to the isostatic state

How do we use shape data?

- Hydrostatic equilibrium
- Isostatic compensation
- Viscous relaxation

- Vesta was likely close to hydrostatic equilibrium in its early history (Fu et al., 2014).
- Vesta's northern terrains likely reflect its pre-impact equilibrium shape.
- Major impact occurred when Vesta was effectively nonrelaxing leading to uncompensated Rheasilvia and Veneneia basins.

- Vesta was likely close to hydrostatic equilibrium in its early history (Fu et al., 2014).
- Vesta's northern terrains likely reflect its pre-impact equilibrium shape.
- Major impact occurred when Vesta was effectively nonrelaxing leading to uncompensated Rheasilvia and Veneneia basins.

- Vesta was likely close to hydrostatic equilibrium in its early history (Fu et al., 2014).
- Vesta's northern terrains likely reflect its pre-impact equilibrium shape.
- Major impact occurred when Vesta was effectively nonrelaxing leading to uncompensated Rheasilvia and Veneneia basins.

Viscous relaxation on Ceres

- Bland et al., 2013 predicted that craters on Ceres would quickly relax in an icedominated shell
 - Equatorial warmer craters would relax faster than colder polar craters
- Bland et al., 2016 did not find that evidence for such relaxation pattern
 - No latitude dependence of crater depth

Viscous relaxation on Ceres

- Bland et al., 2013 predicted that craters on Ceres would quickly relax in an icedominated shell
 - Equatorial warmer craters would relax faster than colder polar craters
- Bland et al., 2016 did not find evidence for such relaxation pattern
 - No latitude dependence of crater depth

Crater depth study

- More general approach: <u>study topography power</u> <u>spectrum</u>
- Power spectra for Vesta closely fits with the power law to the lowest degrees (λ < 750 km)
- Ceres power spectrum deviates from the power law at λ > 270 km

Ermakov et al., 2017

- More general approach: <u>study topography power</u> <u>spectrum</u>
- Power spectra for Vesta closely fits with the power law to the lowest degrees (λ < 750 km)
- Ceres power spectrum deviates from the power law at λ > 270 km

Ermakov et al., 2017

- More general approach: <u>study topography power</u> <u>spectrum</u>
- Power spectra for Vesta closely fits with the power law to the lowest degrees (λ < 750 km)
- Ceres power spectrum deviates from the power law at λ > 270 km

Ermakov et al., 2017

Fu et al., 2014; Fu et al, 2017

- Assume a density and rheology structure
- Solve Stokes equation for an incompressible flow using deal.ii library
- Compute the evolution of the outer surface power spectrum

Fu et al., 2014; Fu et al, 2017

- Assume a density and rheology structure
- Solve Stokes equation for an incompressible flow using deal.ii library
- Compute the evolution of the outer surface power spectrum

Fu et al., 2014; Fu et al, 2017

- Assume a density and rheology structure
- Solve Stokes equation for an incompressible flow using deal.ii library
- Compute the evolution of the outer surface power spectrum

relaxation in the frequency domain

relaxation in the spatial domain

Vesta

Vesta

Vesta

Summary

- Formed early (< 5 My after CAI)
- Once hot and hydrostatic, Vesta is no longer either
- Differentiated interior
- Most of topography acquired when Vesta was already cool => uncompensated topography
- Combination of gravity/topography data with meteoritic geochemistry data provides constraints on the internal structure

- late formation
- and/or heat transfer due to hydrothermal circulation
- Partially differentiated interior
- Experienced viscous relaxation
- Much lower surface viscosities (compared to Vesta) allowed compensated topography
- Ceres' crust is light (based on admittance analysis) and strong (based on FE relaxation modeling)
- Not much water ice in Ceres crust (<35 vol%) now

Internal structures of Vesta and Ceres

Ceres→

- Crust is light (1.1-1.4 g/cc) and mechanically rocklike w
- Mantle density ~2.4 g/cc and unlithified at least to a depth of 100 km

Possible dehydrated rocky core remains HED-unconstrained

←Vesta

- Crustal density constrained by HEDs and admittance (2.8 g/cc)
- Assuming density of iron meteorites (5-8 g/cc), the core radius is 110 155 km

Backup slides

Two-layer model

- Simplest model to interpret the gravitytopography data
- Only 5 parameters: two densities, two radii and rotation rate
- Yields $C/Ma^2 = 0.373$ $C/M(R_{vol})^2 = 0.392$

Using Tricarico 2014 for computing hydrostatic equilibrium

Spherical harmonic degree

Ermakov et al., in prep

- More general approach: study topography power spectrum
- Power spectra for Vesta closely fits with the power law to the lowest degrees (λ < 750 km)
- Ceres power spectrum deviates from the power law at λ > 270 km

Ermakov et al,. in prep

Fu et al., 2014; Fu et al, submitted to EPSL

- Assume a density and rheology structure
- Solve Stokes equation for an incompressible flow using deal.ii library

$$\partial_i (2\eta \dot{\varepsilon}_{ij}) - \partial_i p = -g_i \rho$$

$$\P_i u_i = 0$$

 Compute the evolution of the outer surface power spectrum

Gravity and topography in spherical harmonics

Shape radius vector

Gravitational potential

Power Spectral Density

$$S_n^{gg} = \mathop{\mathring{o}}_{m=0}^n \frac{C_{nm}^2 + S_{nm}^2}{2n+1}$$

gravity

$$S_{n}^{tt} = \frac{{}_{nm}^{n}}{{}_{m=0}^{n}} \frac{A_{nm}^{2} + B_{nm}^{2}}{2n+1}$$

topography

$$S_{n}^{gg} = \mathop{\mathring{o}}_{m=0}^{n} \frac{C_{nm}^{2} + S_{nm}^{2}}{2n+1}$$

$$S_{n}^{tt} = \mathop{\mathring{o}}_{m=0}^{n} \frac{A_{nm}^{2} + B_{nm}^{2}}{2n+1}$$

$$S_{n}^{gt} = \mathop{\mathring{o}}_{m=0}^{n} \frac{A_{nm}C_{nm} + B_{nm}S_{nm}}{2n+1}$$

gravity-topography cross power

$$Z_n = \frac{S_{gt}}{S_{tt}}$$

Linear two-layer hydrostatic model

$$Z_n = \frac{GM}{R^3} \frac{3(n+1)}{2n+1} \frac{\Gamma_{crust}}{\Gamma_{mean}}$$

Linear isostatic model

$$Z_{n} = \frac{GM}{R^{3}} \frac{3(n+1)}{2n+1} \frac{\Gamma_{crust}}{\Gamma_{mean}} \hat{\mathbf{e}}^{1} - \mathbf{e}^{1} - \frac{D_{comp}}{R} \ddot{\mathbf{e}}^{0} \hat{\mathbf{e}}^{1}$$

D_{comp}- depth of compensation

Unique basaltic spectrum

- Unique basaltic spectrum
- A group of asteroids in the dynamical vicinity of Vesta with similar spectra

Why Vesta?

- Unique basaltic spectrum
- A group of asteroids in the dynamical vicinity of Vesta with similar spectra
- Large depression in the southern hemisphere of Vesta

Image credit: NASA/HST

Thomas et al., 1997

- Unique basaltic spectrum
- A group of asteroids in the dynamical vicinity of Vesta with similar spectra
- Large depression in the southern hemisphere of Vesta
- A group of Howardite-Eucrite-Diogenite (HED) meteorites, with similar reflectance spectra

- ↑ Reflectance spectra of eucrite Millbillillie from Wasson et al. (1998)
- **V**-type asteroids spectra from Hardensen et al., (2014)

Why Vesta?

- Unique basaltic spectrum
- A group of asteroids in the dynamical vicinity of Vesta with similar spectra
- Large depression in the southern hemisphere of Vesta
- A group of Howardite-Eucrite-Diogenite (HED) meteorites, with similar reflectance spectra
- Strongest connection between a class of meteorites and an asteroidal family

- ↑ Reflectance spectra of eucrite Millbillillie from Wasson et al. (1998)
- **V**-type asteroids spectra from Hardensen et al., (2014)

Why Ceres?

- Largest body in the asteroid belt
- Low density implies high volatile content
- Conditions for subsurface ocean
- Much easier to reach than other ocean worlds

What did we know before Dawn

Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated into a water mantle and a mostly anhydrous silicate core.

Zolotov 2009

Ceres formed relatively late from planetesimals consisting of hydrated silicates.

Bland 2013

If Ceres *does* contain a water ice layer, its warm diurnallyaveraged surface temperature ensures extensive viscous relaxation of even small impact craters especially near equator

Note on Vening-Meinesz and Kaula rules

- Vening-Meinesz rule for variance of topography (Vening-Meinesz, 1951)
 V_t ~ 1/n²
- Kaula law for RMS of gravity (Kaula, 1963) $M_g \sim 1/n^2$
- Are these two rules consistent assuming uncompensated topography?

$$V_t \sim 1/n^2 => M_t \sim 1/n^{1.5} => M_g \sim 1/n^{2.5}$$

- But Kaula rule says M_g ~ 1/n² NOT M_g ~ 1/n^{2.5}
- Typically assumed in the literature Kaula and Vening-Meinesz rules are not mutually consistent assuming uncompensated topography

RMS spectra

Power laws

General form of a power law

$$M=AR^{\alpha_1}\varrho^{\alpha_2}\lambda^{\alpha_3}$$

• Power law assuming (inverse) surface gravity scaling $(g \sim R^* \rho)$

$$M=AR^{-1}\varrho^{-1}\lambda^{\alpha_3}$$

If we take a log₁₀ of M, we get an equation of a hyperplane

$$\log_{10}M = \log_{10}A + \alpha_1\log_{10}R + \alpha_2\log_{10}Q + \alpha_3\log_{10}\lambda$$

- In our data set, we have a lot of points along the λ direction and not as many points on the other two (R and ρ) directions.
 - In the R and ho directions, we have as many data points as we have bodies
 - In the λ direction, we have as many data points as many we have λ bins.

Markov-chain Monte-Carlo (MCMC)

- We use a free Python library emcee (Foreman-Mackey et al., 2013) to find the best-fit parameters of a power law.
- emcee library is based on *Affine Invariant Markov chain Monte Carlo sampler* (Goodman and Weare, 2010)
- We fit a power law model with:
 - two parameters: A, α_3 -- assuming surface gravity scaling (α_1 =-1, α_2 =-1)
 - four parameters: A, α_1 , α_2 , α_3 -- general scaling.
- For each MCMC run, we will show:
 - A triangle plot of the posterior distribution of the model parameters. This allows seeing the covariances between the parameters.
 - A plot of best-fit model versus the observations. We also show a reduced chi
 squared value to judge about the quality of the best-fit.
- emcee is an extensible, pure-Python implementation of

Results of the MCMC runs

Planets, gravity scaling

Planets, gravity scaling

Planets, general scaling

Planets, general scaling

Asteroids, gravity scaling

Asteroids, gravity scaling

Asteroids, general scaling

Asteroids, general scaling

A priori constraint on gravity RMS

Choose R and ρ

Given R and ρ and a range of λ , sample multivariate normal distribution to get A, $\alpha_1, \alpha_2, \alpha_3$

Find the upper and lower bounds on the gravity RMS spectum

Given A, α_1 , α_2 , α_3 , compute topography RMS spectrum

Given topography RMS spectrum, generate SH coefficients that follow the chosen spectrum

Compute gravity-fromtopography using Wieczorek & Phillips 1998 until convergence w.r.t. to the power of topography

Summary

- Topography RMS spectra of 4 terrestrial planets and the Moon cannot be simultaneously fit with a single power law of the gravity-scaling or general form.
- Topography RMS spectra of asteroids CANNOT be satisfactorily fit with a power law the gravity-scaling form.
- Topography RMS spectra of asteroids CAN be satisfactorily fit with a power law of the general form.
- Despite having different internal structure, composition and mechanical properties of the surface layer, the asteroid topography spectra can be effectively modeled as a general power law

Gravity RMS spectra

Slopes of piecewise fitted gravity RMS spectra

